Towards a multi-scale model of combination targeted and cytotoxic therapy to evaluate treatment response in HER2+ breast cancer

Angela M. Jarrett^a, Alay Shah^b, Meghan J. Bloom^b, Xinzeng Feng^a, Anna G. Sorace^{b-d}, and Thomas E. Yankeelov^{a-d}

^aInstitute for Computational Engineering and Sciences, ^bDepartments of Biomedical Engineering and ^cDiagnostic Medicine, and ^dLivestrong Cancer Institutes at The University of Texas at Austin

Overview

- Using an established ODE model at the tissue scale for a preclinical model of HER2+ breast cancer undergoing trastuzumab treatment, expand to include cell scale effects for combination trastuzumab-paclitaxel therapy
- Will connect the two scales by coupling drug effects into the growth and reduction terms of the governing equation for tumor volume changes
- An integrated mathematical-experimental approach bridging in vivo and in vitro experimental data, and therefore multiple scales, may elucidate the potential best strategies for combination therapy for HER2+ breast cancer

Tissue Scale Model

Five coupled, ODEs for the longitudinal relationship of vasculature, hypoxia, necrosis, immune infiltration, and tumor growth³

$$\begin{bmatrix} \mathbf{1} \end{bmatrix} \quad \frac{dT}{dt} = gT(1 + \rho H) - \mu_T TI$$

$$\begin{bmatrix} \frac{dI}{dt} - \alpha & V(1 - I) + \alpha & N(1 - I) \end{bmatrix}$$

[2]
$$\frac{dI}{dt} = \alpha_V V(1 - I) + \alpha_N N(1 - I) - \mu_I IT$$

[3]
$$\frac{dV}{dt} = \alpha_T T (1 - V) + \alpha_I I (1 - V) - \mu_V V T$$

[4]
$$\frac{dN}{dt} = \beta(1 - V)(1 - N) - \mu_N NI$$

		with 95% con
able 1: D	efinitions of model variables	intervals in
Output	Description	with dashed
T	Tumor volume	against validation
I	Fraction of immune response in tumor	for tumor volur
V	Fraction of well-vascularized tumor	95% confidenc
N	Fraction of necrosis in tumor	bars (right:
Н	Fraction of hypoxia in tumor	volume, left:

Table 2. Definitions of model narameters

Table 2: Definitions of model parameters		
Parameter	Description	
g	Tumor volume growth rate	
ho	Ability of hypoxia to promote tumor growth	
μ_T	Rate tumor volume decreases due to immune response	
α_N	Rate immune response increases due to necrosis	
$lpha_V$	Rate immune response increases due to vasculature	
μ_I	Rate immune response decreases per tumor volume	
$lpha_T$	Rate vascularization increases per tumor volume	
$lpha_I$	Rate vascularization increases due to immune response	
μ_V	Rate well-vascularized tissue decreases per tumor volume	
β	Rate necrosis increases due to decreased fraction of well-	
	vascularized tumor	
μ_N	Rate necrosis decreases due to immune response	
γ	Rate hypoxia increases or decreases due to fraction of	
	well-vascularized tumor	
δ	Threshold for hypoxia to increase or decrease due to	
	fraction of well-vascularized tumor	

Figure 2: Diagram of the interactions in the model equations between the different biological components

In vivo data

- Nude athymic mice subcutaneously implanted with BT474 HER2+ human breast cancer cells in the flank (allowed to grow for 4-6 weeks) and injected on days 0 and 3 with trastuzumab (10 mg/kg) or, in controls, with saline.
- Over 7 days, tumor volume, vasculature, necrosis, hypoxia, and immune response measurements quantified using several experimental methods (Table 1)
- Tumor volume collected using caliper measurements
- Physiological parameter vascular perfusion and permeability, Ktrans, derived from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) data for fraction of well-vascularized tumor
- Hematoxylin and eosin (H&E) staining for percent necrosis

Fraction of immune Immunofluorescent stained response in tumor histology data³

• ¹⁸F-fluoromisonidazole positron emission tomography (FMISO-PET) standard uptake values for percent hypoxia.

hypoxia in tumor

• Immunofluorescent imaging for CD11c & F4/80 myeloid markers for immune infiltration

In vitro data

- BT474 breast cancer in vitro cell data measured by time-resolved microscopy
- Cultures treated with trastuzumab and/or paclitaxel on days 1 and 2 after cells are plated
- Change in confluence recorded over the course of seven days
- Trastuzumab dosing prior to paclitaxel potentially results in the greatest reduction in tumor cells

Figure 5: Diagram of the

Formulation for Combining in vivo and in vitro scales

tissue components)

$$\frac{dT}{dt} = g(1 + \rho H) \left(1 - \frac{T}{K}\right) T - \frac{dT}{dT} - \mu_C TI$$

- Trastuzumab-HER2 binding decreases proliferation and causes signaling cascades that can lead to cell death
- Paclitaxel arrests proliferation during mitosis leading to cell death (and therefore its effectiveness depends on cellular proliferation rates)
- Drug efflux will depend on a threshold amount (γ) of the remaining previous drug dose

Next Steps

- Formulation of growth and death terms of the multiscale model
- Collect data for BT474 cells quantifying:
 - 1. Internalized paclitaxel
 - 2. Bound trastuzumab
 - Internalized trastuzumab
 - 4. Catabolized trastuzumab
- Calibrate the multiscale model with *in vitro* data and make combination therapy predictions

For further information please contact: ajarrett@utexas.edu References:

- 1. Sorace, A.G., et al., Breast Cancer Res Treat, 2016. **155**(2): p. 273-284
- 2. Sorace, A.G., et al., Mol Imaging Biol, 2017. **19**(1): p. 130-137
- 3. Jarrett, A.M., et al., Under Review